Lista de Exercícios 6 - Exercícios sobre Estereoquímica

- 1. Observando as estruturas de A a D responda:
- a) Uma mistura 1:1 de A e B é opticamente ativa?
- b) Qual dos compostos é meso, tréo ou éritro?
- c) Qual a relação entre o par tréo e entre o par éritro-tréo?

2. Faça a Projeção de Fischer para as moléculas abaixo:

CH3CHOHCHCH3OC2H5

HO₂CCHOHCHOHCOCH₃

- **3.** O $[\alpha]$ específico de uma solução de apenas um enantiômero de 2-cloro-2-feniletano é -49,2. Em uma solução com 20% do enantiômero de $[\alpha]$ específico citado e 80% do outro enantiômero, qual o α obs?
- **4.** Desenhar a imagem das estruturas abaixo e indicar a Configuração absoluta dos centros.

OH CHO
$$CO_2H$$
 OH H_3C H CH_2OH CH_3 CH_3 CH_3

5. Indicar qual a relação entre a estrutura 1 e as estereorepresentações abaixo:

6. Indicar se as estruturas são enantiômeros, diastereoisômeros ou idênticas.

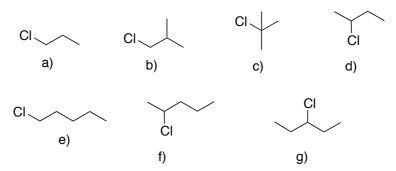
https://patyqmc.paginas.ufsc.br/

7. São confôrmeros, diastereoisômeros e ou enantiômeros

8. Quais dos compostos abaixo são meso?

9. Atribua configuração R ou S a cada centro quiral nas moléculas abaixo.

$$F_3C$$
 H. OH


H. NH_2 H. CHO

10. Preencher a tabela considerando l = 1 dm.

Composto	Peso	α□observado	Concentração	α Despecífico
	Molecular			
A	-	32,6	0,7 g/mL	?
В	115	?	l mol/L	-72,5
С	745	?	0,01 mol/L	-2,1
D	127	?	0,56 mol/L	-27,3

- **11.** Indicar a relação entre as estruturas e representá-las na forma estendida.
- a) (2R,4S)-2-bromo-4-cloropentano e (2R,4R)-2-bromo-4-cloropentano
- b) (2R,4R)-2,4-dibromopentano e Meso-2,4-dibromopentano
- **12.** Assumindo que as medidas foram efetuadas em polarímetro com cela de 1 dm:
- a) Qual o $[\alpha]$ de uma solução de 0,4 g de 2-butanol em 10 mL de água, sendo que o α obs = -0,56?
- b) A sacarose apresenta [α] = 66,40. Qual a rotação observada de uma solução contendo 3 g em 10 mL de água?
- c) O (S)-monosódio glutamato (MSG) puro tem $[\alpha]$ = +24. Uma amostra adquirida comercialmente apresentou α obs = -16. Qual a porcentagem de S e R nesta amostra? Qual o e.e.?

13. Diga se os compostos abaixo são quirais, se forem determine a configuração absoluta de cada centro quiral, desenhando os enântiômeros.

14. Faça a projeção de Fischer para as moléculas abaixo:

15. Determinar a configuração absoluta dos centros.

16. Indicar os compostos como eritro ou treo.

17. Qual é a configuração absoluta das moléculas abaixo?

18. Coloque as estruturas que seguem na projeção de Fischer, depois classifique em R e S cada estereocentro.

19. Os aminoácidos isoleucina e aloisoleucina estão representados abaixo em suas conformações alternadas. Escreva as projeções de Fischer de cada molécula. Estes compostos são enantiômeros ou diasteroisômeros?

$$H_3CH_2C$$
 H_3C
 H_3

20. Quais são as relações estereoquímicas (idênticos, enantiômeros ou diastereoisômeros) das quatro moléculas abaixo?

- **21.** Desenhe a estrutura dos compostos abaixo representando o anel na forma planar. Quais são quirais? Quais são meso? Indique a localização do plano de simetria em cada composto meso.
- a) cis-1,2-Diclorociclopentano e seu isômero trans
- b) cis-1,3-Diclorociclopentano e seu isômero trans
- c) cis-1,2-Diclorocicloexano e seu isômero trans
- d) cis-1,3-Diclorocicloexano e seu isômero trans
- **22.** As moléculas abaixo são quirais?

a)
$$HO$$

b) Ph
 CO_2Me

c) CH_2
 HO_2C
 CO_2H
 CO_2H
 CO_2H

23. Muitos compostos são encontrados na natureza como um único estereoisômero embora apresentem muitos estereocentros. Indique quantos estereocentros estão presentes em cada um dos seguintes produtos naturais e calcule quantos estereoisômeros são possíveis.

Sacarose